Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
China Journal of Chinese Materia Medica ; (24): 2820-2828, 2023.
Article in Chinese | WPRIM | ID: wpr-981385

ABSTRACT

This study aims to explore the effect of "Trichosanthis Fructus-Allii Macrostemonis" combination(GX) on the activation of NOD-, LRR-, and pyrin domain-containing protein 3(NLRP3) inflammasome, the release of inflammatory cytokines, and the level of autophagy in RAW264.7 macrophage damaged by lipopolysaccharide(LPS), and the mechanism of GX against inflammatory response in macrophages. To be specific, LPS was used to induce the injury of RAW264.7 cells. Cell Counting Kit-8(CCK-8) assay was employed to measure the survival rate of cells, and Western blot to detect the protein expression of NLRP3, apoptosis-associated speck-like protein(ASC), cysteine-aspartic acid protease(caspase)-1, interleukin(IL)-18, IL-1β, microtubule-associated protein light chain 3(LC3)-Ⅱ, and selective autophagy junction protein p62/sequestosome 1 in RAW264.7 macrophages. ELISA was used to measure the levels of IL-18 and IL-1β in RAW264.7 cells. Transmission electron microscopy was applied to observe the number of autophagosomes in RAW264.7 cells. Immunofulourescence staining was used to detect the expression of LC3-Ⅱ and p62 in RAW264.7 cells. The result showed that GX significantly reduced the protein expression of NLRP3, ASC, and caspase-1 in RAW264.7 cells, significantly increased the protein expression of LC3Ⅱ, decreased the expression of p62, significantly inhibited the secretion of IL-18 and IL-1β, significantly increased the number of autophagosomes, significantly enhanced the immunofluorescence of LC3Ⅱ, and reduced the immunofluorescence of p62. Furthermore, 3-methyladenine(3-MA) could reverse the inhibitory effect of GX on NLRP3, ASC, and caspase-1 and reduce the release of IL-18 and IL-1β. In summary, GX can increase of the autophagy activity of RAW264.7 and inhibit the activation of NLRP3 inflammasome, thereby reducing the release of inflammatory cytokines and suppressing inflammatory response in macrophages.


Subject(s)
Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Interleukin-18/metabolism , Lipopolysaccharides/pharmacology , Macrophages , Cytokines/metabolism , Caspase 1/metabolism , Autophagy , Interleukin-1beta/metabolism
2.
Journal of Zhejiang University. Science. B ; (12): 723-733, 2023.
Article in English | WPRIM | ID: wpr-982406

ABSTRACT

Ivermectin is a US Food and Drug Administration (FDA)-approved antiparasitic agent with antiviral and anti-inflammatory properties. Although recent studies reported the possible anti-inflammatory activity of ivermectin in respiratory injuries, its potential therapeutic effect on pulmonary fibrosis (PF) has not been investigated. This study aimed to explore the ability of ivermectin (0.6 mg/kg) to alleviate bleomycin-induced biochemical derangements and histological changes in an experimental PF rat model. This can provide the means to validate the clinical utility of ivermectin as a treatment option for idiopathic PF. The results showed that ivermectin mitigated the bleomycin-evoked pulmonary injury, as manifested by the reduced infiltration of inflammatory cells, as well as decreased the inflammation and fibrosis scores. Intriguingly, ivermectin decreased collagen fiber deposition and suppressed transforming growth factor-‍β1 (TGF-‍β1) and fibronectin protein expression, highlighting its anti-fibrotic activity. This study revealed for the first time that ivermectin can suppress the nucleotide-binding oligomerization domain (NOD)‍-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome, as manifested by the reduced gene expression of NLRP3 and the apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), with a subsequent decline in the interleukin‍-‍1β (IL‍-‍1β) level. In addition, ivermectin inhibited the expression of intracellular nuclear factor-‍κB (NF‍-‍κB) and hypoxia‑inducible factor‑1α (HIF‍-‍1α) proteins along with lowering the oxidative stress and apoptotic markers. Altogether, this study revealed that ivermectin could ameliorate pulmonary inflammation and fibrosis induced by bleomycin. These beneficial effects were mediated, at least partly, via the downregulation of TGF-‍β1 and fibronectin, as well as the suppression of NLRP3 inflammasome through modulating the expression of HIF‑1α and NF-‍κB.


Subject(s)
Animals , Rats , Anti-Inflammatory Agents , Bleomycin/toxicity , Fibronectins/metabolism , Fibrosis , Inflammasomes/metabolism , Ivermectin/adverse effects , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pulmonary Fibrosis/drug therapy
3.
Chinese journal of integrative medicine ; (12): 750-760, 2023.
Article in English | WPRIM | ID: wpr-982305

ABSTRACT

Ulcerative colitis (UC) is a chronic, non-specific intestinal disease that not only affects the quality of life of patients and their families but also increases the risk of colorectal cancer. The nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome is an important component of inflammatory response system, and its activation induces an inflammatory cascade response that is involved in the development and progression of UC by releasing inflammatory cytokines, damaging intestinal epithelial cells, and disrupting the intestinal mucosal barrier. Chinese medicine (CM) plays a vital role in the prevention and treatment of UC and is able to regulate NLRP3 inflammasome. Many experimental studies on the regulation of NLRP3 inflammasome mediated by CM have been carried out, demonstrating that CM formulae with main effects of clearing heat, detoxifying toxicity, drying dampness, and activating blood circulation. Flavonoids and phenylpropanoids can effectively regulate NLRP3 inflammasome. Other active components of CM can interfere with the process of NLRP3 inflammasome assembly and activation, leading to a reduction in inflammation and UC symptoms. However, the reports are relatively scattered and lack systematic reviews. This paper reviews the latest findings regarding the NLRP3 inflammasome activation-related pathways associated with UC and the potential of CM in treating UC through modulation of NLRP3 inflammasome. The purpose of this review is to explore the possible pathological mechanisms of UC and suggest new directions for development of therapeutic tools.


Subject(s)
Humans , Inflammasomes/metabolism , Colitis, Ulcerative/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Medicine, Chinese Traditional , Quality of Life , Colitis
4.
Journal of Central South University(Medical Sciences) ; (12): 252-259, 2023.
Article in English | WPRIM | ID: wpr-971392

ABSTRACT

Inflammatory injury of the intestine is often accompanied by symptoms such as damage to intestinal mucosa, increased intestinal permeability, and intestinal motility dysfunction. Inflammatory factors spread throughout the body via blood circulation, and can cause multi-organ failure. Pyroptosis is a newly discovered way of programmed cell death, which is mainly characterized by the formation of plasma membrane vesicles, cell swelling until the rupture of the cell membrane, and the release of cell contents, thereby activating a drastic inflammatory response and expanding the inflammatory response cascade. Pyroptosis is widely involved in the occurrence of diseases, and the underlying mechanisms for inflammation are still a hot spot of current research. The caspase-1 mediated canonical inflammasome pathway of pyroptosis and caspase-4/5/8/11-mediated non-canonical inflammasome pathway are closely related to the occurrence and development of intestinal inflammation. Therefore, investigation of the signaling pathways and molecular mechanisms of pyroptosis in intestinal injury in sepsis, inflammatory bowel diseases, infectious enteristic, and intestinal tumor is of great significance for the prevention and treatment of intestinal inflammatory injury.


Subject(s)
Humans , Pyroptosis , Inflammasomes/metabolism , Apoptosis , Caspase 1 , Inflammation
5.
Chinese Journal of Hepatology ; (12): 20-31, 2023.
Article in Chinese | WPRIM | ID: wpr-970940

ABSTRACT

Objective: To investigate the potential function and related mechanism of microRNA-223 (miRNA-223) in the podocyte pyroptosis of hepatitis B virus (HBV)-associated glomerulonephritis induced by HBV X protein (HBx). Methods: HBx-overexpressing lentivirus was transfected into human renal podocytes to mimic the pathogenesis of HBV-GN. Real-time fluorescence quantitative PCR and Western blotting experiments were used to detect the mRNA and protein expression of pyroptosis-related proteins [nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC) and caspase-1], and inflammatory factors (interleukin-1β and interleukin-18), respectively.TUNEL staining and flow cytometry were used to detect the number of pyroptosis cells. Immunofluorescence staining was used to detect the expression of podocytes biomarkers desmin and nephrin; Hoechst 33342 staining was used to observe the morphological and quantitative changes of podocyte nuclei. Enzyme-linked immunosorbent assay was used to measure caspase-1 activity. The dual luciferase reporter gene assay was used to verify the downstream target of miRNA-223. Podocytes were divided into the following nine groups: control group (no special treatment), empty plasmid group (transfected with empty plasmid), HBx overexpression group (transfected with HBx overexpression lentivirus), HBx overexpression+miRNA-223 mimic group (transfected with HBx overexpression lentivirus and miRNA-223 mimic), HBx overexpression+miRNA-223 inhibitor group (transfected with HBx overexpression lentivirus and miRNA-223 inhibitor), HBx overexpression+miRNA-223 mimic+NLRP3 group (transfected with HBx overexpression lentivirus, miRNA-223 mimic and NLRP3 overexpression plasmid), HBx overexpression+miRNA-223 mimic+ NLRP3 siRNA group (transfected with HBx overexpression lentivirus, miRNA-223 mimic and NLRP3 siRNA), HBx overexpression+miRNA-223 inhibitor+NLRP3 group (transfected with HBx overexpression lentivirus, miRNA-223 inhibitor and NLRP3 overexpression plasmid), HBx overexpression+miRNA-223 inhibitor+NLRP3 siRNA group (transfected with HBx overexpression lentivirus, miRNA-223 inhibitor and NLRP3 siRNA). Results: miRNA-223 was down-regulated in HBx overexpression group compared with the control group (P < 0.05). TUNEL and immunofluorescence staining showed that NLRP3 knockdown attenuated podocyte injury and pyroptosis induced by HBx overexpression (P < 0.05). Dual luciferase reporter gene assay demonstrated that NLRP3 was one of the downstream targets of miRNA-223. Rescue experiments revealed that NLRP3 overexpression weakened the protective effect of miRNA-223 in podocyte injury (P < 0.05). The addition of miRNA-223 mimic and NLRP3 siRNA decreased the expression of NLRP3 inflammasome and cytokines, and reduced the number of pyroptosis cells induced by HBx overexpression (all P < 0.05); The addition of miRNA-223 inhibitor and NLRP3 overexpression plasmid significantly increased the expression of NLRP3 inflammasome and cytokines, caspase-1 activity, and the number of pyroptosis cells (all P < 0.05). Conclusion: HBx may promote podocyte pyroptosis of HBV-GN via downregulating miRNA-223 targeting NLRP3 inflammasome, suggesting that miRNA-223 is expected to be a potential target for the treatment of HBV-GN.


Subject(s)
Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , Podocytes/metabolism , Hepatitis B virus/genetics , Caspase 1/metabolism , Cytokines/metabolism , Carrier Proteins/metabolism , MicroRNAs/genetics , Glomerulonephritis/metabolism , RNA, Small Interfering
6.
China Journal of Chinese Materia Medica ; (24): 300-310, 2023.
Article in Chinese | WPRIM | ID: wpr-970466

ABSTRACT

As one of the most frequent complications of diabetes, diabetic neuropathy often involves peripheral and central nervous systems. Neuroinflammation is the key pathogenic factor of secondary nerve injury in diabetes. NOD-like receptor pyrin domain-containing 3(NLRP3) inflammasome is a group of subcellular multiprotein complexes, including NLRP3, apoptosis associated speck-like protein(ASC), and pro-cysteinyl aspartate specific proteinase 1(pro-caspase-1). NLRP3 inflammasome is an inducer of innate immune responses. Its activation stimulates the inflammatory cascade reaction, promotes the release of inflammatory mediators, triggers cell death and uncontrolled autophagy, activates glial cells, facilitates peripheral immune cell infiltration, and initiates amyoid β(Aβ)-tau cascade reactions. As a result, it contributes to the central nerve, somatic nerve, autonomic nerve, and retinal nerve cell damage secondary to diabetes. Therefore, due to its key role in the neuroinflammation responses of the body, NLRP3 inflammasome may provide new targets for the treatment of diabetic neuropathy. With multi-target and low-toxicity advantages, traditional Chinese medicine plays a vital role in the treatment of diabetic neuropathy. Accumulating evidence has shown that traditional Chinese medicine exerts curative effects on diabetic neuropathy possibly through regulating NLRP3 inflammasome. Although the role of NLRP3 inflammasome in diabetes and related complications has been investigated in the literature, systematical studies on drugs and mechanism analysis for secondary neuropathy are still lacking. In this article, the role of NLRP3 inflammasome in diabetic neuropathy was explored, and the research progress on traditional Chinese medicine in the treatment of diabetic neuropathy through NLRP3 inflammasome was reviewed.


Subject(s)
Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Diabetic Neuropathies/drug therapy , Medicine, Chinese Traditional , Neuroinflammatory Diseases , Inflammation , Diabetes Mellitus
7.
Chinese Journal of Industrial Hygiene and Occupational Diseases ; (12): 241-247, 2022.
Article in Chinese | WPRIM | ID: wpr-935785

ABSTRACT

Objective: To explore the mechanism of reactive oxygen species/thioredoxin-interacting protein/nucleotide-binding oligomerization domain-like receptor 3 (ROS/TXNIP/NLRP3) pathway in the skin injury of trichloroethylene (TCE) sensitized mice. Methods: In August 2020, 40 female BALB/c mice were randomly divided into control group (n=5) , solvent control group (n=5) , TCE treatment group (n=15) and TCE+(2-(2, 2, 6, 6-Tetrameyhylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl) triphenylphosphonium chloride (Mito TEMPO) treatment group (n=15) . The TCE sensitization model was established. Mice in the TCE treatment group and TCE+Mito TEMPO treatment group were divided into the sensitized positive group and the sensitized negative group according to the skin erythema and edema reactions on the back of the mice 24 h after the last stimulation. The mice were sacrificed 72 h after the last stimulation, the back skin of the mice was taken, and the skin lesions were observed. Immunohistochemistry (IHC) was used to detect the expression level of NLRP3, and the Western Blot was performed to detect the expression levels of NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC) , cysteinyl aspartate specific proteinase 1 (Caspase 1) , Interleukin-1β (IL-1β) and TXNIP proteins in the skin of the mice, the reactive oxygen species (ROS) kit was used to detect the level of intracellular ROS in the back skin tissue. Results: The sensitization rates of TCE treatment group and TCE+Mito TEMPO treatment group were 40.0% (6/15) and 33.3% (5/15) , respectively, and there was no significant difference between the two groups (P>0.05) . The back skin of the mice in the TCE sensitized positive group was thickened and infiltrated by a large number of inflammatory cells. The number of mitochondria in the epidermis cells was significantly reduced, the mitochondrial crest disappeared and vacuolar degeneration occurred. TCE+Mito TEMPO sensitized positive group had less damage, more mitochondria and relatively normal cell structure. Compared with the solvent control group and corresponding sensitized negative groups, the expression levels of NLRP3, ASC, Caspase 1, IL-1β, TXNIP proteins and the content of ROS in the TCE sensitized positive group and TCE+Mito TEMPO sensitized positive group were significantly increased (P<0.05) . Compared with TCE sensitized positive group, the expression levels of NLRP3, ASC, Caspase 1, IL-1β, TXNIP proteins and the content of ROS in the TCE+Mito TEMPO sensitized positive group were significantly decreased (P<0.05) . Conclusion: ROS/TXNIP/NLRP3 pathway was activated and then encouraged the release of IL-1β, finally aggravated the TCE-induced skin injury.


Subject(s)
Animals , Female , Mice , Carrier Proteins , Caspase 1/metabolism , Inflammasomes/metabolism , Mice, Inbred BALB C , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism , Solvents , Thioredoxins/metabolism , Trichloroethylene/toxicity
8.
Chinese journal of integrative medicine ; (12): 594-602, 2022.
Article in English | WPRIM | ID: wpr-939784

ABSTRACT

OBJECTIVE@#To determine whether Schisandrin B (Sch B) attenuates early brain injury (EBI) in rats with subarachnoid hemorrhage (SAH).@*METHODS@#Sprague-Dawley rats were divided into sham (sham operation), SAH, SAH+vehicle, and SAH+Sch B groups using a random number table. Rats underwent SAH by endovascular perforation and received Sch B (100 mg/kg) or normal saline after 2 and 12 h of SAH. SAH grading, neurological scores, brain water content, Evan's blue extravasation, and terminal transferase-mediated dUTP nick end-labeling (TUNEL) staining were carried out 24 h after SAH. Immunofluorescent staining was performed to detect the expressions of ionized calcium binding adapter molecule 1 (Iba-1) and myeloperoxidase (MPO) in the rat brain, while the expressions of B-cell lymphoma 2 (Bcl-2), Bax, Caspase-3, nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3), apoptosis-associated specklike protein containing the caspase-1 activator domain (ASC), Caspase-1, interleukin (IL)-1β, and IL-18 in the rat brains were detected by Western blot.@*RESULTS@#Compared with the SAH group, Sch B significantly improved the neurological function, reduced brain water content, Evan's blue content, and apoptotic cells number in the brain of rats (P<0.05 or P<0.01). Moreover, Sch B decreased SAH-induced expressions of Iba-1 and MPO (P<0.01). SAH caused the elevated expressions of Bax, Caspase-3, NLRP3, ASC, Caspase-1, IL-1β, and IL-18 in the rat brain (P<0.01), all of which were inhibited by Sch B (P<0.01). In addition, Sch B increased the Bcl-2 expression (P<0.01).@*CONCLUSION@#Sch B attenuated SAH-induced EBI, which might be associated with the inhibition of neuroinflammation, neuronal apoptosis, and the NLRP3 inflammatory signaling pathway.


Subject(s)
Animals , Rats , Apoptosis , Brain/pathology , Brain Injuries/pathology , Caspase 3/metabolism , Cyclooctanes , Evans Blue , Inflammasomes/metabolism , Interleukin-18/metabolism , Lignans , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Polycyclic Compounds , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats, Sprague-Dawley , Subarachnoid Hemorrhage/drug therapy , Water , bcl-2-Associated X Protein/metabolism
9.
China Journal of Chinese Materia Medica ; (24): 2516-2524, 2022.
Article in Chinese | WPRIM | ID: wpr-928131

ABSTRACT

This study aims to explore the effect of butyl alcohol extract of Baitouweng Decoction(BAEB) on vulvovaginal candidiasis(VVC) in mice and to clarify the mechanism from Toll-like receptors(TLRs)/MyD88 and Dectin-1/Syk signal pathways and NLRP3 inflammasome. To be specific, female KM mice were randomized into control group(i.g., normal saline), model group, fluco-nazole group(i.g., 20 mg·kg~(-1)), and low-dose, medium-dose, and high-dose BAEB groups(i.g., 20, 40, and 80 mg·kg~(-1), respectively). VVC was induced in mice except the control group. After the modeling, administration began and lasted 7 days. The ge-neral conditions and body weight of mice were recorded every day. On the 1 st, 3 rd, 7 th, and 14 th after vaginal infection by Candida albicans, the fungal load in the vaginal lavage fluid of the mice was measured with the plate method, and the morphology of C. albicans in vaginal lavage fluid was observed based on Gram staining. After the mice were killed, vaginal tissues were subjected to hematoxylin-eosin(HE) staining and periodic acid-Schiff(PAS) staining for vaginal histopathological analysis. The content of cytokines in vaginal lavage fluid, such as interleukin(IL)-1β, IL-18, tumor necrosis factor-α(TNF-α), IL-6, and S100 a8, was determined by enzyme-linked immunosorbent assay(ELISA), and content of reactive oxygen species(ROS) in vaginal tissues by tissue ROS detection kit. The protein expression of NLRP3, ASC, caspase-1, Dectin-1, Syk, MyD88, TLR2, TLR4, and nuclear factor-κB(NF-κB) in vaginal tissues was detected by Western blot, and the levels and distribution of NLRP3, Dectin-1, Syk, MyD88, TLR2, and TLR4 in vaginal tissues were determined with the immunohistochemical method. The results show that BAEB can improve the general conditions of VVC mice, reduce the fungal load and C. albicans hyphae in vaginal secretion, decrease ROS content in vaginal tissues and content of cytokines in vaginal lavage fluid, and down-regulate the expression of NLRP3, ASC, caspase-1, Dectin-1, Syk, MyD88, TLR2, TLR4, and NF-κB in vaginal tissues. The above results indicate that BAEB exerts therapeutic effect on VVC mice by down-regulating the key proteins in the TLRs/MyD88 and Dectin-1/Syk signal pathways and NLRP3 inflammasome.


Subject(s)
Animals , Female , Humans , Mice , 1-Butanol/therapeutic use , Candida albicans , Candidiasis, Vulvovaginal/drug therapy , Caspase 1/metabolism , Cytokines/metabolism , Inflammasomes/metabolism , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Plant Extracts/therapeutic use , Reactive Oxygen Species/metabolism , Signal Transduction , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism
10.
China Journal of Chinese Materia Medica ; (24): 2409-2418, 2022.
Article in Chinese | WPRIM | ID: wpr-928120

ABSTRACT

In recent years, liver fibrosis has become a hotspot in the field of liver diseases. MicroRNA(miRNA)-mediated Nod-like receptor pyrin domain containing 3(NLRP3) inflammasome activation is pivotal in the pathogenesis of liver fibrosis. The present study mainly discussed the role of miRNA-mediated NLRP3 inflammasome activation in the pathogenesis of liver fibrosis. Different miRNA molecules regulated liver fibrosis by mediating NLRP3 inflammasome activation, including miRNA-350-3 p(miR-350-3 p)/interleukin-6(IL-6)-mediated signal transducer and activator of transcription 3(STAT3)/c-myc signaling pathway, miR-148 a-induced autophagy and apoptosis of hepatic stellate cells via hedgehog signaling pathway, miR-155-mediated NLRP3 inflammasome by the negative feedback of the suppressor of cytokine signaling-1(SOCS-1), miR-181 a-mediated downstream NLRP3 inflammatory pathway activation through mitogen-activated protein kinase kinase(MEK)/extracellular signal-regulated kinase(ERK)/nuclear transcription factor κB(NF-κB) inflammatory pathway, miR-21-promoted expression of NF-κB and NLRP3 of RAW264.7 cells in mice by inhibiting tumor necrosis factor-α inducible protein 3(A20), and miR-20 b-promoted expression of IL-1β and IL-18 by activating NLRP3 signaling pathway. Additionally, the anti-liver fibrosis mechanism of different active components in Chinese medicines(such as Curcumae Rhizoma, Glycyrrhizae Radix et Rhizoma, Aurantii Fructus, Polygoni Cuspidati Rhizoma et Radix, Moutan Cortex, Paeoniae Radix Alba, Epimedii Folium, and Cinnamomi Cortex) was also explored based on the anti-liver fibrosis effect of miRNA-mediated NLRP3 inflammasome activation.


Subject(s)
Animals , Mice , Hedgehog Proteins , Inflammasomes/metabolism , Interleukin-6 , Liver Cirrhosis/metabolism , Medicine, Chinese Traditional , MicroRNAs/genetics , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction
11.
China Journal of Chinese Materia Medica ; (24): 476-483, 2022.
Article in Chinese | WPRIM | ID: wpr-927992

ABSTRACT

Ginsenoside Rg_1, one of the main active components of precious traditional Chinese medicine Ginseng Radix et Rhizoma, has the anti-oxidative stress, anti-inflammation, anti-aging, neuroprotection, and other pharmacological effects. Diabetic retinopathy(DR), the most common complication of diabetes, is also the main cause of impaired vision and blindness in the middle-aged and the elderly. The latest research shows that ginsenoside Rg_1 can protect patients against DR, but the protection and the mechanism are rarely studied. This study mainly explored the protective effect of ginsenoside Rg_1 against DR in type 2 diabetic mice and the mechanism. High fat diet(HFD) and streptozotocin(STZ) were used to induce type 2 diabetes in mice, and hematoxylin-eosin(HE) staining was employed to observe pathological changes in the retina of mice. The immunohistochemistry was applied to study the localization and expression of nucleotide-binding oligomerization domain-like receptors 3(NLRP3) and vascular endothelial growth factor(VEGF) in retina, and Western blot was used to detect the expression of nuclear factor-kappa B(NF-κB), p-NF-κB, NLRP3, caspase-1, interleukin-1β(IL-1β), transient receptor potential channel protein 6(TRPC6), nuclear factor of activated T-cell 2(NFAT2), and VEGF in retina. The results showed that ginsenoside Rg_1 significantly alleviated the pathological injury of retina in type 2 diabetic mice. Immunohistochemistry results demonstrated that ginsenoside Rg_1 significantly decreased the expression of NLRP3 and VEGF in retinal ganglion cells, middle plexiform layer, and outer plexiform layer in type 2 diabetic mice. According to the Western blot results, ginsenoside Rg_1 significantly lowered the expression of p-NF-κB, NLRP3, caspase-1, IL-1β, TRPC6, NFAT2, and VEGF in retina of type 2 diabetic mice. These findings suggest that ginsenoside Rg_1 can significantly alleviate DR in type 2 diabetic mice, which may be related to inhibition of NLRP3 inflammasome and VEGF. This study provides experimental evidence for the clinical application of ginsenoside Rg_1 in the treatment of DR.


Subject(s)
Aged , Animals , Humans , Mice , Middle Aged , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetic Retinopathy/genetics , Ginsenosides/pharmacology , Inflammasomes/metabolism , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Signal Transduction , Vascular Endothelial Growth Factor A/genetics
12.
Chinese Journal of Applied Physiology ; (6): 11-16, 2022.
Article in Chinese | WPRIM | ID: wpr-927890

ABSTRACT

Objective: To investigate the effects of the pyrin domain-containing protein 3 (NLRP3) inflammasome inhibitor MCC950 on nerve injury in rats with intracerebral hemorrhage(ICH). Methods: Seventy-two SD rats were randomly divided into three groups (n=24): Sham group, ICH group and MCC950 group. ICH group and MCC950 group rats were injected with autogenous non-anticoagulant blood to establish ICH model, and then the rats in MCC950 group were intraperitoneally injected with MCC950 at the dose of 10 mg/kg(2 mg/ml) for 3 days after ICH model was established. Seventy-two hours after the establishment of the model, the forelimb placement test, the corner test and mNSS score were performed to observe the neurological function of the rats with ICH. The volume of hematoma was observed in fresh brain tissue sections. HE staining was used to observe the pathological changes of brain tissue. The dry-wet weight ratio was calculated to evaluate the changes of brain tissue edema. The degeneration of neurons was observed by FJC staining. The neuronal apoptosis was observed by TUNEL staining. The protein expression and activation levels of NLRP3, ASC, caspase-1, IL-1β, IL-18 and GSDMD were determined by Western blot. Results: Compared with sham group, the percentage of successful placement of left forelimb and left turn was decreased significantly (P<0.01, P<0.05), mNSS score was increased significantly (P<0.01) in ICH group. Hematoma volume was increased significantly, the number of microglial cells around the hematoma was increased, the number of neurons was decreased, nerve cell swelled, some cells showed pyknotic necrosis, and the staining was deepened. The water content of the right base was increased significantly (P<0.05). The number of FJC positive and TUNEL positive cells around the hematoma was increased significantly (P<0.05). The levels of NLRP3, ASC, caspase-1, pro-caspase-1, caspase-1/pro-caspase-1 ratio, GSDMD-N, GSDMD, GSDMD-N/GSDMD ratio, IL-1β and IL-18 were increased significantly (P<0.01, P< 0.05). Compared with ICH group, the percentage of successful placement of left forelimb and left turn was increased significantly in MCC950 group (P<0.05), while the mNSS score and the volume of hematoma were decreased significantly (P<0.01), the swelling degree of nerve cells around the hematoma was reduced significantly, and the number of pyrotic necrotic cells was decreased. The water content of the right base was decreased significantly (P<0.05), and the number of FJC positive and TUNEL positive cells around the hematoma was decreased significantly (P<0.05). The levels of NLRP3, ASC, caspase-1, pro-caspase-1, caspase-1/pro-caspase-1 ratio, GSDMD-N, GSDMD, GSDMD-N/GSDMD ratio, IL-1β and IL-18 were decreased significantly (P<0.05). Conclusion: MCC950 can ameliorate nerve injury after ICH by inhibiting NLRP3 inflammasome mediated inflammation and pyroptosis.


Subject(s)
Animals , Rats , Caspase 1/metabolism , Cerebral Hemorrhage/pathology , Furans , Hematoma , Indenes , Inflammasomes/metabolism , Interleukin-18 , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Rats, Sprague-Dawley , Sulfonamides , Water
13.
Mem. Inst. Oswaldo Cruz ; 115: e190324, 2020. tab, graf
Article in English | LILACS | ID: biblio-1091245

ABSTRACT

BACKGROUND Leprosy is an infectious-contagious disease caused by Mycobacterium leprae that remain endemic in 105 countries. This neglected disease has a wide range of clinical and histopathological manifestations that are related to the host inflammatory and immune responses. More recently, the inflammasome has assumed a relevant role in the inflammatory response against microbiological agents. However, the involvement of inflammasome in leprosy remains poorly understood. OBJECTIVES The aim is to associate biomarkers of inflammasome with the different immunopathological forms of leprosy. METHODS We performed an observational, cross-sectional, and comparative study of the immunophenotypic expression of inflammasome-associated proteins in immunopathological forms of leprosy of 99 skin lesion samples by immunohistochemistry. The intensity and percentage of NLRP3, Caspase-1, Caspases-4/5, interleukin-1β and interleukin-18 immunoreactivities in the inflammatory infiltrate of skin biopsies were evaluated. FINDINGS Strong expression of NLRP3 and inflammatory Caspases-4/5 were observed in lepromatous leprosy (lepromatous pole). In addition, were observed low expression of caspase-1, interleukin-1β, and interleukin-18 in tuberculoid and lepromatous leprosy. The interpolar or borderline form showed immunophenotype predominantly similar to the lepromatous pole. MAIN CONCLUSIONS Our results demonstrate that the NLRP3 inflammasome is inactive in leprosy, suggesting immune evasion of M. leprae.


Subject(s)
Humans , Immune Evasion/immunology , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Leprosy/immunology , Leprosy/metabolism , Mycobacterium leprae/immunology , Immunohistochemistry , Cross-Sectional Studies , Leprosy/pathology
14.
Rev. chil. endocrinol. diabetes ; 7(2): 56-59, abr.2014.
Article in Spanish | LILACS | ID: lil-779319

ABSTRACT

Obesity is a condition in which there is excessive accumulation of subcutaneous and abdominal adipose tissue. This adipose tissue is no longer considered inert and dedicated solely to energy storage. For more than a decade is considered in an active tissue in the regulation of physiological and pathological processes, including immunity and inflammation. Adipose tissue produces and releases a variety of adipokines (leptin, adiponectin, resistin, and visfatin) and cytokine pro - and anti -inflammatory (TNF - alpha 945;, IL-4, IL-6, etc.). Adipose tissue is also implicated in the development of chronic metabolic diseases such as type 2 diabetes or cardiovascular disease. Obesity is therefore an under lying condition for the appearance of inflammatory and metabolic diseases. These adipokines, behave, according to each physiological state, such as a metabolic disrupter. The environment (diet and sedentary lifestyle) have significantly changed the constitution of this adipose tissue, so that patterns of good nutrition and lifestyle play a critical role in the growth of the adipose tissue...


Subject(s)
Humans , Adipocytes/metabolism , Adipokines/metabolism , Inflammasomes/metabolism , Adipose Tissue/metabolism
15.
The Korean Journal of Gastroenterology ; : 300-310, 2011.
Article in Korean | WPRIM | ID: wpr-78290

ABSTRACT

Inflammatory bowel disease (IBD), the most important entities being ulcerative colitis and Crohn's disease, are chronic, relapsing and remitting inflammatory conditions that result from chronic dysregulation of the mucosal immune system in the intestinal tract. Although the precise pathogenesis of IBD is still incompletely understood, increased levels of proinflammatory cytokines, including interleukin (IL)-1beta, IL-18 and tumor necrosis factor-alpha, are detected in active IBD and correlate with the severity of inflammation, indicating that these cytokines may play a key role in the development of IBD. Recently, the intracellular nucleotide-binding oligomerization domain-like receptor (NLR) family members, including NLRP1, NLRP3, NLRC4 and NLRP6, are emerging as important regulators of intestinal homeostasis. Together, one of those aforementioned molecules or the DNA sensor absent in melanoma 2 (AIM2), apoptosis-associated speck-like protein containing 'a caspase recruitment domain (CARD)' (ASC) and caspase-1 form a large (>700 kDa) multi-protein complex called the inflammasome. Stimulation with specific microbial and endogenous molecules triggers inflammasome assembly and caspase-1 activation. Activated caspase-1 leads to the secretion of proinflammatory cytokines, including IL-1beta and IL-18, and the promotion of pyroptosis, a form of phagocyte cell death induced by bacterial pathogens, in an inflamed tissue. Therefore, inflammasomes are assumed to mediate host defense against microbial pathogens and gut homeostasis, so that their dysregulation might contribute to IBD pathogenesis. This review focuses on recent advances of the role of NLRP3 inflammasome signaling in IBD pathogenesis. Improving knowledge of the inflammasome could provide insights into potential therapeutic targets for patients with IBD.


Subject(s)
Humans , CARD Signaling Adaptor Proteins/metabolism , Carrier Proteins/metabolism , Caspase 1/metabolism , Inflammasomes/metabolism , Inflammatory Bowel Diseases/metabolism , Interleukin-18/metabolism , Interleukin-1beta/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL